

Brewlines

Balaji Enzyme and Chemical Pvt Ltd

No. 106/107, A5/1, Parasnath Complex, Owali Gaon, Dapoda Road, Bhiwandi - 421302 | +91-72-08124000

E-mail: info@becc.org.in | Web.: www.becc.org.in

Introducing BrewTimes:

We M/s Balaji Enzyme & Chemical Pvt Ltd, are pleased to bring to you our June 2022 month edition of BrewTimes.

We would like to use this platform to introduce our association with BetaTec, UK for their natural solutions for ethanol recovery in grain and molasses distilleries. The product is revolutionary and unlike any in the market is 100% natural and antibiotics free. Vitahop series of products helps in ensuring optimum yield and keeps the yeast healthy all naturally.

We are extremely proud of announcing our association with IIT Bombay Research Park. We have begun a journey together to work on sustainable, reliable and innovative solutions for the Food and Beverage Industry.

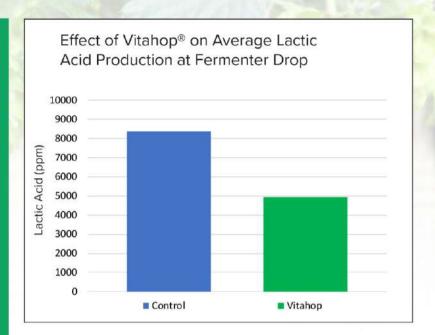
About Our Company:

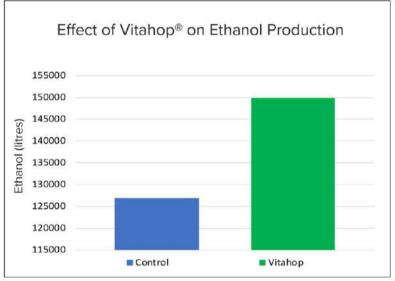
We M/s Balaji Enzyme & Chemical Pvt Ltd are a leading supplier of Enzymes, Filter aid, Yeast, Hops, Processing aids, Clarifiers and food fortification products to breweries, distilleries, malt extract industry, starch industry, juice and beverage industry, and other food industry.

Vitahop® is a range of natural hop extracts, ideal for production of bioethanol from a range of raw material feedstocks, as they protect yeast from bacterial growth, and their acid byproducts, during fermentation processes. When used as part of a planned process regime with regular additions, bacterial infections do not develop and spoil yeast fermentations.

When infections do develop, they can quickly get out of control and disrupt production, potentially causing substantial losses and lost revenue. By controlling bacteria and preventing bacterial growth, catastrophic infections can be a thing of the past.

Vitahop[®] is used in both continuous and batch fermentations. It helps ensure healthy, vitalised yeast growth and during fermentation suppress gram positive bacteria. If bacteria are allowed to prosper, they will compete with and eventually inhibit the yeast, slowing fermentation sometimes to a complete stop, resulting in a "stuck" fermentation. Bacteria will also use up valuable feedstock producing organic acids such as lactic acid, further reducing ethanol yields. Prevent this happening with Vitahop®.





Key Benefits of Vitahop®

- Maintains optimum ethanol yields
- Ensures reliable fermentations
- Keeps yeast healthy
- Controls bacteria
- Demonstrated benefits in ethanol production plants worldwide
- Safe and natural, easy to use
- Safe DDGS for animal feed
- A natural alternative to antibiotics

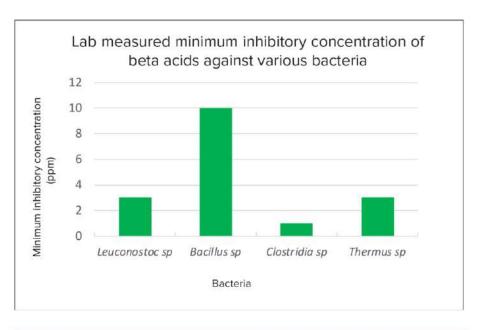
Unpublished data BetaTec 2015

BetaTec is the first company worldwide specialising in the application of hops and hop-derived compounds for use in "beyond brewing" industries. Our product portfolio includes natural fermentation aids, antibacterials, flavours and functional ingredients. Our key business areas are alcohol, yeast and sugar production.

All BetaTec products are accompanied by on-site support, process optimisation and consulting.

Please contact our technical experts to learn how Vitahop® can help you sustain improved ethanol yields.

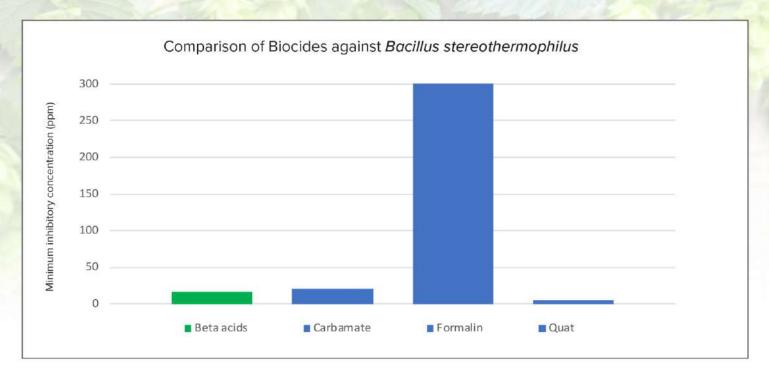
BetaTec Corporate Office 5185 MacArthur Blvd NW, Suite 300 Washington, DC 20016 202.777.4800 BetaTec Innovation Centre Malvern Hills Science Park Geraldine Road Great Malvern, Worcestershire WR14 3SZ +44(0) 1684 217340


BetaStab® XL controls problematic Gram postive bacteria found in sugar extraction

Microbial sugar losses are a major problem in sugar production resulting in lower yields, increased processing problems and higher impurities such as lactic acid and dextran.

The hop product BetaStab® XL is a natural food processing aid. For more than 10 years it has proven effective at controlling bacteria in factories worldwide and is a cost effective alternative to synthetic biocides.

Our product can be applied during the production of sugar from either beet or cane. it is an aqueous solution of natural hop acids and is active over a wide range of temperatures and pH values.



Key advantages of BetaStab® XL

- Active against bacterial contamination at ppm levels.
 Immediately stops bacterial growth
- Control of lactic acid, dextran and nitrite production
- Effective over a range of pH values and temperatures
- Demonstrated activity in sugar cane mills and sugar beet factories worldwide
- Cost effective alternative to synthetic biocides
- Can be used in thick juice storage, prolonging storage times
- Products are water based for ease of dosing
- Safe to handle and non-corrosive to equipment
- Coproducts suitable for animal feed
- Residues are beneficial for yeast and ethanol fermentation processes

BetaTec Corporate Office 5185 MacArthur Blvd NW, Suite 300 Washington, DC 20016 202.777.4800 BetaTec is the first company worldwide specialising in the application of hops and hop-derived compounds for use in "beyond brewing" industries. Our product portfolio includes natural fermentation aids, antibacterials, flavours and functional ingredients. Our key business areas are alcohol, yeast and sugar production

All BetaTec products are accompanied by on-site support, process optimisation and consulting.

Please contact our technical experts to learn how BetaStab® XL can help you.

BetaTec Innovation Centre Malvern Hills Science Park Geraldine Road Great Malvern, Worcestershire WR14 3SZ +44(0) 1684 217340

AZACCA®

ADHA 438 c.v.

Azacca® ADHA 438 c.v. is named for the Haitian god of agriculture. It was developed through the Association for the Development of Hop Agronomy (ADHA) in Yakima. Azacca is a high alpha, high oil variety which exhibits a complex range of fruit, spice, and wood aromas.

CITRUS

WOODY AROMATIC

GREEN-GRASSY

Ripe mango, papaya, pineapple, Valencia orange, grapefruit, pine resin, fresh grass.

14-16
4.0-5.5
38-45
1.6-2.5
46-55
14-18
8-12
<1

BEER IN CANS-ADVANTAGES

BIJAY BAHADUR

B.Sc. (Hons.); B.Tech. (Gold Medallist); PGDEE; FIE; Chartered Engineer (India) PE (ECI); LMIIChE; LMAFST (I)

Introduction

Today, no stone is being left unturned in the drive to improve sustainability of the brewing industry by the brewery management. Packaging is not only an essential component of modern living, but it makes a positive contribution to a sustainable society. Packaging is as much under the spotlight as any production process, with recognizing that environmental benefits can be gained from all parts of the supply chain.

Hence, decision to be taken regarding what type of packaging we should use – glass bottles, aluminum cans or PET bottles depending on our own assumptions and analysis. Brewery have their own specific ideas of what is best materials are in certain markets and specific situations.

The Marketplace Picture

Worldwide consumers have been choosing glass and cans as opposed to PET. *According to the Rexam Consumer Packaging Report 2011-2012.*

Type of Packaging	Market Share
Glass Bottle	62%
Metal Can	23%
PET Bottle	5%

Brewery cannot win the battles rather must consider the environment into account for the majority of the packaging as consumers are certainly having range of the products that consumers can choose from. In a world of constantly increasing complexity, the brewing industry, too, faces its challenges.

Water, will become the most fought-ever resource in the world and barley prices will rise – both issues of core significance to the brewing industry.

Water treatment is becoming increasingly important. An ambitious goal to use only 1 liter of water to produce 1 liter of beer. Hence, brewery need to focus more and more on recycling or repurposing the waste products of the brewing process by incorporating new technology, upgradation of the existing resources.

In the near future, there will be brewing industry dominated by robot technology and it is recommended for the immediate expanded use of sensor technology in the brewery.

In addition to the issue of progressive automation, recycling of waste as one of the important topics in the near future. Approx. 25% of all CO2 emissions associated with brewery are caused solely by packaging materials. To combat these emissions, brewery need to explore the possibility of developing a bottle made entirely of 100% biodegradable fibers.

Bottles vs. Cans

The packaging of beer has become a major concern and important subject in recent years. Breweries in India also look at the differences between bottles and cans, and whether this makes any difference to the flavor of our beer.

The ultimate aim of all beer packaging whether it be bottle or can is to deliver to the consumer beer that is fresh and flavorful.

As far as storage goes, canned beer might have a slight advantage over bottles in that cans actually protect beer from light and oxygen. Cans are airtight and oxygen-free. Light is one of the biggest causes of perceivable flavour differences between beers that are packaged in bottle compared to beer in cans. The difference in flavour is more commonly known as light-struck or skunky and ultimately undrinkable. Oxygen can also leach into a bottled beer under the bottle cap and affect the taste, which could potentially spoil the beer.

It is also very important that the packaging material itself does not have a flavour which can taint the beer. This is the main criticism levelled at beer cans.

It is hard to determine whether beer in glass bottles is more or less eco-friendly than beer in aluminum cans.

Can beer often claim that aluminum cans are the greener vessel because aluminum is lighter, which makes for a smaller carbon footprint from transportation than glass. Recycling aluminum offers bigtime energy savings when it comes to producing the next round of aluminum cans. From packaging footprint: Aluminum can have a smaller carbon footprint than the glass bottle.

Also, the bottle has a paper label on it, and paper has a lot of water content in it. Part of the reason the carbon footprint for an aluminum can is lower is that the aluminum can has more recycled content than any other beverage container. Generally, making a can out of recycled content, it requires 95% less energy. So, in the carbon-footprint equation, recycling is really a key component."

"Recycling 100 beer bottles require more energy than recycling 100 aluminum cans, but making the aluminum cans requires a lot more energy."

A larger percentage of aluminum cans are made from recycled material when compared to glass and the energy requirements of recycling and material yield also favor aluminum.

It is needless to mention here that cans are more practical than bottles - especially for outdoor recreation - being that they don't shatter, never require an opener, weigh less, fit more handily into a cooler, and impact the environmental less as well as stackable.

The biggest misconception about canned beer is that the aluminum can imparts a metallic taste. The insides of the can and lid have a sprayed coating, ensuring that there is absolutely no contact between the beer and the aluminum. Also, the recent trend is that most people enjoy draft beer, which is filled in a metal keg.

Advantages of Cans

1. Recyclable:

Cans are fully & infinitely recyclable without any quality loss.

2. Permanent Materials:

The material in cans is only used, not consumed. Because they are infinitely recyclable, metals are permanent resources.

3. Quickly Chilled:

Cans chill quickly and feel extra-fresh to the touch.

4. Unbreakable:

Unbreakable cans are ideal for large events

5. *Materials Thickness:*

The side if the cans are only 0.65 mm thick – as thin as human hair.

6. Light-Proof:

Cans are absolutely light-proof, protecting the quality of light-sensitive beer.

7. Stackable:

The flat ends and characteristic shape of the cans means that a truck carrying cans is able to transport twice as much as a truck loaded with bottles.

8. Hermetic Seal:

Being absolutely airtight, cans keep oxygen out and fizz in. allowing beer to stay fresh for longer.

9. Lightweight:

Light and convenient, cans are great for refreshment on the go.

10. Fresh:

The characteristic sound of a can opening is a unique indicator that the beer inside is absolutely fresh.

Conclusions

Today, packaging is as much under the spotlight as any production process, with recognizing that environmental benefits can be gained from all parts of the supply chain.

The packaging of beer has become a major concern and important subject in recent years for the brewing industry considering the launch of patent design glass bottles by big breweries in India. Breweries in India also look at the differences between bottles and cans, and whether this makes any difference to the flavor of our beer.

The recycled bottles will have to be stopped one fine day and to be taken over by the cans, new glass bottles (patented) and the PET bottles. Beer in PET bottle will succeed in India if the correct technology is developed to maintain the shelf life of a beer for a minimum of one year.

The ultimate aim of all beer packaging whether it be bottle or can is to deliver to the consumer beer that is fresh and flavorful.

As per the recent trend, most people enjoy draft beer, which is filled in a metal keg and hence the people have to think of canned beer as a mini keg.

We have been noticed a new trend popping up in our local shops: beer in cans. Canned beer has long been considered the bottom. The negative attitude towards canned beer is rapidly changing across India choose canning over bottling for the many benefits that cans provide as this packaging becomes more popular.

SAURABH N. PERKAR

B. Tech. Chemical engineer Head brewer Alchemy microbrewery, bangalore

Implementing data of distilled water mash ph and water residual alkalinity using miliequivalant per liter to understand how to get exact results every time with your brews.

We have been looking at topics of miliequivalant per liter units, distilled water mash ph and effect of calcium, magnesium, carbonate, bicarbonate, sulphate and chloride ion concentration.

But "what's the use of this all in brewing"?

Above question might have pop up in many regular readers so in this article will understand all of this concepts in this article.

This all parameters need to be calculated before brewing and how we can calculate it it's been discussed in previous articles.

This time we will have example of an actual brew of belgian style wit beer done by me will try to explain how to use this above all parameters. This includes only distilled water mash ph interaction with residual alkalinity to achieve desired actual mash ph.

Lets begins with belgian wit description I had brewed which had good reviews and appreciated by patrons. It's target ABV was 4.6 %, with IBU 16 along with SRM 3.5. Was balanced with flavors of orange, clove and coriander seeds. Sulphate to chloride ratio was maintained at 0.6 to have maximum malty flavors in beer.

Now, my malt bill was

Pilsner malt 46.61 %

Wheat 44.03 %

Gladiator malt 4.48 %

Rolled oats 4.88 %

This above malt mill gave me 12.3° brix after boil gravity with exact SRM of 3.5 which is perfect straw pale colour with little hue of orange colour. With 83.16 brewing efficiency without supplementing mash enzymes. Average diastatic power of above malt mill was 73.95° Linter which is quite good enough even after using collectively 9.36% of malt bill with gladiator malt and rolled oats which doesn't contribute enzyme activity to mashing. All thanks to 250°WK and 260°WK contributed from pilsner and wheat malt.

Now let's have look at following parameters.

My distilled water mash ph for above mentioned malt bill was 5.86 for 2.83 ratio of water to milled malt ratio. Here mash thickness also affect distilled water mash ph.

And my brewing water had ion concentration

2ppm caco3

2 ppm calcium

0 ppm magnesium

10 ppm sulphate

10 ppm chloride

From above all calculated residual alkalinity of water was 0.010 meg/l.

And this 0.010 meq/l will just drop mash ph by 0.04 but my target was 5.35 mash ph so I knew my water R.A. should be -10.

So after calculations we know that how much quantity of calcium chloride and magnesium sulphate to add to achieve target mash ph of 5.35. We used said above because those helps to reduce residual alkalinity and ultimately mash ph. I didn't used calcium sulphate because considered magnesium sulphate.

To drop down mash ph from 5.82 to 5.35 I had to add 3.38 gm of calcium chloride and 1.25 gm of magnesium sulphate per liter of mash water. Along with decreasing my mash ph it also contributed chloride and sulphate ion concentration.

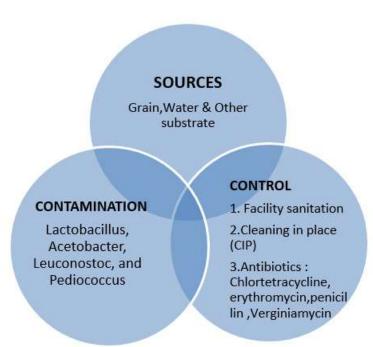
- 3.38 gm calcium chloride / liter of water contributed 2.87 ppm of chloride ion.
- 1.25 gm magnesium sulphate / liter of water contributed 1.723 ppm of sulphate ion.

From above contribution of sulphate to chloride ratio I achieved 0.6 ratio to get right malty flavor in my Belgian wit beer.

So we have understood how data of distilled water mash ph, residual alkalinity and miliequivalents per liter can help you to improve your brews. Because right ph as respective of optimum enzyme activity temperatures can give you more extract from malt and ultimately can create unique flavor profile.

Why Your DDGS is Missing the Mark (And How You Can Fix It)

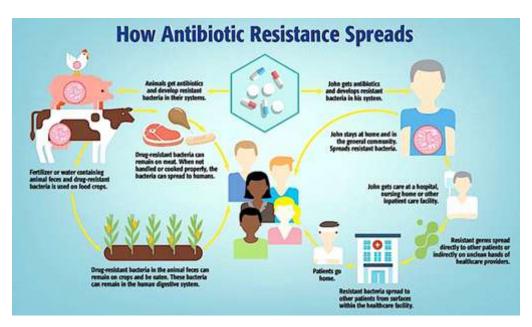
SACHIN MOGAL


Senior Manager (Alcohol and Malt spirit)
Balaji Enzyme & Chemical Pvt Ltd
M: 9666049638

E: sachin.mogal@becc.org.in

DDGS (Dried Distillers Grain in Soluble) is a protein rich diet that has replaced majority of the protein diets in market that includes soybean, mustard, GNE and similar items. Proteins, fiber and minerals present in DDGS feed makes them a smart choice for cattle that gives them higher energy. According to a poll, it may also contain antibiotics if it originates from an ethanol distillery that utilizes antibiotics in their procedure to prevent bacterial infection.

Bacterial Contamination during the Production of Fuel Ethanol


Biofuel ethanol facilities have two main options to prevent and control bacterial contamination: (1) facility sanitation with regularly scheduled shutdowns and cleaning-in-place (CIP) procedures, and (2) use of antibiotics. Chlortetracycline, erythromycin, and VM are examples of antibiotics that have been used throughout the history of ethanol production. Additionally, several of the antibiotics previously described are no longer being used in the ethanol production industry due to fears of residues being present in DDGS, unknown effects to livestock and poultry that consume the DDGS, and their potential presence in animal-derived food products.

In fact, Phibro Animal Health Corporation (Teaneck, NJ), Lallemand Biofuels & Distilled Spirits (Duluth, GA) and Ferm Solutions Inc. (Danville, KY) do not currently market any products that contain tetracycline.

Antibiotic Exposure and Potential Acquisition of Bacterial Resistance

Several reports have implicated animal agriculture and the ethanol industry as the main contributors to antibiotic resistance and non-medical misuse of antibiotics (Olmstead, 2009; Meek et al., 2015). Although antibiotic use has been an effective mitigation strategy for bacterial contamination, there is increasing concern about the development of bacterial resistance to antibiotics and transfer of resistance to humans when feeding DDGS to livestock and poultry. Several studies have reported that antibiotic resistant bacteria are present in ethanol production facilities (Lushia and Heist, 2005).

Flow diagram of antibiotic resistance determinants among the different reservoirs

Drug-resistant bacterial infections – over a million people died in 2019

According to the Global Research on Antimicrobial Resistance report, published in The Lancet, a study that analysed data from 204 countries and territories revealed that, in 2019, antimicrobial resistance was directly responsible for an estimated 1.27 million deaths and associated with about 4.95 million deaths. Of those, 1.27 million deaths were the direct result of AMR — meaning that drug-resistant infections killed more people than HIV/AIDS (864,000 deaths) or malaria (643,000 deaths).

DDGS Little Known Ways to more revenue

As an example of POET largest ethanol production company announced in 2011 that they initiated changing a portion of their production facilities to operate without the use of antibiotics (Ranallo, 2011). The DDGS produced by the antibiotic-free ethanol facilities can be certified as "antibiotic-free" sells more than 4 million tons of trademarked *Dakota Gold DDGS* to a variety of animal feed markets, and may potentially improve demand and achieve a higher price/tonne compared with conventional DDGS (Albrecht, 2018). Poet partnered with UEP in a recently completed study showing that adding DDGS to layer diets can dramatically reduce ammonia emissions from the farm,". This trend that was initiated by POET is also occurring in other ethanol facilities throughout the U.S. Another motivation for producing "antibiotic-free" co-products is when profit margins for ethanol become small or negative, which causes ethanol producers to place greater emphasis on improving DDGS quality and value because it is the second most important source of revenue.

Policies, Regulations & Rules across World

The Institute for Agriculture and Trade Policy applauded Poet's certified antibiotic-free DDGS and called for the rest of the ethanol industry to remove antibiotics from the production process. More than 40 percent of U.S. ethanol plants use some form of antibiotic-free antimicrobial, according to a 2009 report.

Several countries have introduced bills, policies, and laws to limit or strengthen controls on the use of antibiotics in farmed animal feed and to prohibit the import of animal meat. South Korea, France, the European Union, Russia, the United Kingdom, and India are among them.

A 2017 global study on antibiotic use in farm animals projected the **consumption of antibiotics through animal sources to nearly double during 2013-2030.**

Breakthrough to the Problem

Non-antibiotic alternatives may potentially be a viable option are classified into two main categories including:

Chemical treatment	Natural or plant derived compounds and extracts
Potential for equipment corrosion and a negative	Botanicals are derived from naturally occurring
impact on fuel quality if chlorides are present in	sources (i.e. plants and microorganisms) that have
the ethanol,	biological activity against bacteria
Could lead to fuel regulation compliance issues	These types of compounds are perceived as natural,
	"holistic", and more environmentally friendly than
	chemical alternatives

Overall, the most commonly researched non-antibiotic alternative is hops extract (Rückle and Senn, 2006). BetaTec is a company that sells antimicrobial hop extracts to the ethanol sector. Natural hop extracts differ from antibiotics in that they have several targets on microorganisms..

To prevent and control the spread of antibiotic resistance, policy makers can:

- Ensure a robust national action plan to tackle antibiotic resistance is in place.
- Improve surveillance of antibiotic-resistant infections.
- Strengthen policies, programmes, and implementation of infection prevention and control measures.
- Regulate and promote the appropriate use and disposal of quality medicines.
- Make information available on the impact of antibiotic resistance.

Many ethanol producers are already using readily available alternatives to antibiotics, and the regulations for protecting public health are already in place. An immediate ban on the use of antibiotics in ethanol production, halting antibiotic marketing to the ethanol industry by drug companies, and a voluntary transition to antibiotic alternatives by ethanol producers are among IATP's top policy recommendations.

"While there are no available alternatives to antibiotics for human health, there are alternatives for ethanol production," said author Julia Olmstead, senior program associate with IATP. "The FDA needs to follow the law and prohibit antibiotics sales to ethanol producers."

LOW ALCOHOLIC BEER

AKSHAT JAIN

Business Development Manager-Craft Brewing

Low-alcohol beer is beer with little or no alcohol content and aims to reproduce the taste of beer while eliminating (or at least reducing) the inebriating effects of standard alcoholic brews. Most low-alcohol beers are lagers, but there are some low-alcohol ales. Low-alcohol beer is also known as light beer, non-alcoholic beer, small beer, small ale, or near-beer.

Low-alcoholic brews such as small beer date back at least to Medieval Europe, where they served as a less risky alternative to water (which often was polluted by feces and parasites) and were less expensive than the full strength brews used at festivals.

In US, By the 1980s and 1990s, growing concerns about alcoholism led to the growing popularity of "light" beers. In the 2010s, breweries have focused on marketing low-alcohol beers to counter the popularity of homebrew. Declining consumption has also led to the introduction of mass-market non-alcoholic beverages, dubbed as "near beer". Low-alcohol and alcohol-free bars and pubs have also started to open to cater for drinkers of non-alcoholic beverages, such as Scottish brewer BrewDog's London bar opened in early 2020.

In the UK, the introduction of a lower rate of beer duty for low-strength beer (of 2.8% ABV or less) in October 2011, spurred many small brewers to revive old small beer styles and create higher-hopped craft beers at the lower alcohol level to be able to lower the cost of their beer to consumers.

At the start of the 21st century, alcohol-free beer has seen a rise in popularity in the Middle East (which now makes up a third of the market). One reason for this is that Islamic scholars issued fatawa which permitted the consumption of beer as long as large quantities could be consumed without getting drunk

Cateogaries of Low Alcoholic Beer

In the United States, beverages containing less than 0.5% alcohol by volume (ABV) were legally called non-alcoholic, according to the now-defunct Volstead Act. Because of its very low alcohol content, non-alcoholic beer may be legally sold to people under age 21 in many American states.

In the United Kingdom, Government guidance recommends the following descriptions for "alcohol substitute" drinks including alcohol-free beer. The use of these descriptions is voluntary:[9][10]

No alcohol or alcohol-free: not more than 0.05% ABV Dealcoholized: over 0.05% but less than 0.5% ABV

Low-alcohol: not more than 1.2% ABV

In some parts of the European Union, beer must contain no more than 0.5% ABV if it is labelled "alcohol-free".

LOW ALCOHOL BEER IN INDIA

There has been a shift in consumers' outlook on drinking alcohol in India, with many preferring moderate experiential drinking over binge drinking.

Indians, especially younger consumers, want to drink responsibly and are more likely to move away from beer due to its higher alcohol content and negative side effects such as getting drunk or and having a hangover.

According to Mintel research, close to a third of Indians between the ages of 25-34 say that they have reduced their beer intake in the past 12 months. This shift away from alcohol is indicative of the emerging low/no-alcohol trend seen globally and presents an opportunity for local brands in India to tap into this trend.

In India, non-alcoholic beer has been the focus for most breweries with a majority of launches focussing on zero alcohol. However, consumer demand indicates an opportunity for low-alcohol beer as well.

Mintel research highlights that two in five beer drinkers have also had low/no alcohol (LNA) beer in the past six months. This goes to show that there is a significant amount of beer consumers who are interested in the category.

7 best low-calorie & non-alcoholic beers to drink in India

- 1. BIRA 91 Light
- 2. Kingfisher Radler
- 3. Heineken 0.0
- Budweiser 0.0 Non-Alcoholic Beer
- Miller Lite
- 6. Amstel Malt Classic Non-Alcoholic
- 7. Kingfisher Ultra Non-Alcoholic

Most regular beer drinkers in India are experimental since a third of these young adults have had more than five types of beers in the past six months. Therefore, innovation is key for beer brands. In fact, as these consumers like to switch between beer variants, trials for LNA beer can be encouraged if brands provide consumers with the freedom to choose options with varying alcohol content levels.

Low/no-alcohol beer will appeal to health-conscious young Indian adults who are also focused on responsible drinking. While non-alcoholic beer launches have increased over the last three years, there is an opportunity to provide consumers with low-alcohol beer variants to give them freedom of choice. Not only should brands imitate the overall look and feel of standard strength beer, but they should also provide experiences similar to that of microbreweries and other on-premise locations.

WINE REPORT

KANCHAN SINGH

Chapter Head - South Delhi, India Apex Wine Club India 1 May 2022, Sunday

A significant growth is expected in the wine industry which will benefit grape cultivators in India, after the India Australia Economic Cooperation Trade Agreement (ECTA), which was signed on 2 April 2022. The Indian wine industry will improve in harvesting, crop cultivation, high quality wines, and best practices.

According to India-Australia ECTA, India and Australia will enhance bilateral cooperation on wine trade which includes customs procedures, regulatory requirements, certification and testing procedures.

India and Australia have signed an interim trade deal which permits duty free wine and spirits exports from India to Australia in return for permission to permit import of Australian wine at a minimum price point of \$5 per 750 ml bottle.

There is a need to increase the wine market of India, as India is the only country in the world which has a focus on brown spirits, with a wine market of one per cent in the alcohol beverage industry.

Brewlimes

Balaji Enzyme and Chemical Pvt Ltd

No. 106/107, A5/1, Parasnath Complex, Owali Gaon, Dapoda Road, Bhiwandi - 421302 | +91-72-08124000

E-mail: info@becc.org.in | Web.: www.becc.org.in